1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
/*! This module provides forward and reverse substring search routines. Unlike the standard library's substring search routines, these work on arbitrary bytes. For all non-empty needles, these routines will report exactly the same values as the corresponding routines in the standard library. For the empty needle, the standard library reports matches only at valid UTF-8 boundaries, where as these routines will report matches at every position. Other than being able to work on arbitrary bytes, the primary reason to prefer these routines over the standard library routines is that these will generally be faster. In some cases, significantly so. # Example: iterating over substring matches This example shows how to use [`find_iter`] to find occurrences of a substring in a haystack. ``` use memchr::memmem; let haystack = b"foo bar foo baz foo"; let mut it = memmem::find_iter(haystack, "foo"); assert_eq!(Some(0), it.next()); assert_eq!(Some(8), it.next()); assert_eq!(Some(16), it.next()); assert_eq!(None, it.next()); ``` # Example: iterating over substring matches in reverse This example shows how to use [`rfind_iter`] to find occurrences of a substring in a haystack starting from the end of the haystack. **NOTE:** This module does not implement double ended iterators, so reverse searches aren't done by calling `rev` on a forward iterator. ``` use memchr::memmem; let haystack = b"foo bar foo baz foo"; let mut it = memmem::rfind_iter(haystack, "foo"); assert_eq!(Some(16), it.next()); assert_eq!(Some(8), it.next()); assert_eq!(Some(0), it.next()); assert_eq!(None, it.next()); ``` # Example: repeating a search for the same needle It may be possible for the overhead of constructing a substring searcher to be measurable in some workloads. In cases where the same needle is used to search many haystacks, it is possible to do construction once and thus to avoid it for subsequent searches. This can be done with a [`Finder`] (or a [`FinderRev`] for reverse searches). ``` use memchr::memmem; let finder = memmem::Finder::new("foo"); assert_eq!(Some(4), finder.find(b"baz foo quux")); assert_eq!(None, finder.find(b"quux baz bar")); ``` */ pub use self::prefilter::Prefilter; use crate::{ cow::CowBytes, memmem::{ prefilter::{Pre, PrefilterFn, PrefilterState}, rabinkarp::NeedleHash, rarebytes::RareNeedleBytes, }, }; /// Defines a suite of quickcheck properties for forward and reverse /// substring searching. /// /// This is defined in this specific spot so that it can be used freely among /// the different substring search implementations. I couldn't be bothered to /// fight with the macro-visibility rules enough to figure out how to stuff it /// somewhere more convenient. #[cfg(all(test, feature = "std"))] macro_rules! define_memmem_quickcheck_tests { ($fwd:expr, $rev:expr) => { use crate::memmem::proptests; quickcheck::quickcheck! { fn qc_fwd_prefix_is_substring(bs: Vec<u8>) -> bool { proptests::prefix_is_substring(false, &bs, $fwd) } fn qc_fwd_suffix_is_substring(bs: Vec<u8>) -> bool { proptests::suffix_is_substring(false, &bs, $fwd) } fn qc_fwd_matches_naive( haystack: Vec<u8>, needle: Vec<u8> ) -> bool { proptests::matches_naive(false, &haystack, &needle, $fwd) } fn qc_rev_prefix_is_substring(bs: Vec<u8>) -> bool { proptests::prefix_is_substring(true, &bs, $rev) } fn qc_rev_suffix_is_substring(bs: Vec<u8>) -> bool { proptests::suffix_is_substring(true, &bs, $rev) } fn qc_rev_matches_naive( haystack: Vec<u8>, needle: Vec<u8> ) -> bool { proptests::matches_naive(true, &haystack, &needle, $rev) } } }; } /// Defines a suite of "simple" hand-written tests for a substring /// implementation. /// /// This is defined here for the same reason that /// define_memmem_quickcheck_tests is defined here. #[cfg(test)] macro_rules! define_memmem_simple_tests { ($fwd:expr, $rev:expr) => { use crate::memmem::testsimples; #[test] fn simple_forward() { testsimples::run_search_tests_fwd($fwd); } #[test] fn simple_reverse() { testsimples::run_search_tests_rev($rev); } }; } mod byte_frequencies; #[cfg(all(target_arch = "x86_64", memchr_runtime_simd))] mod genericsimd; mod prefilter; mod rabinkarp; mod rarebytes; mod twoway; mod util; // SIMD is only supported on x86_64 currently. #[cfg(target_arch = "x86_64")] mod vector; #[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))] mod x86; /// Returns an iterator over all occurrences of a substring in a haystack. /// /// # Complexity /// /// This routine is guaranteed to have worst case linear time complexity /// with respect to both the needle and the haystack. That is, this runs /// in `O(needle.len() + haystack.len())` time. /// /// This routine is also guaranteed to have worst case constant space /// complexity. /// /// # Examples /// /// Basic usage: /// /// ``` /// use memchr::memmem; /// /// let haystack = b"foo bar foo baz foo"; /// let mut it = memmem::find_iter(haystack, b"foo"); /// assert_eq!(Some(0), it.next()); /// assert_eq!(Some(8), it.next()); /// assert_eq!(Some(16), it.next()); /// assert_eq!(None, it.next()); /// ``` #[inline] pub fn find_iter<'h, 'n, N: 'n + ?Sized + AsRef<[u8]>>( haystack: &'h [u8], needle: &'n N, ) -> FindIter<'h, 'n> { FindIter::new(haystack, Finder::new(needle)) } /// Returns a reverse iterator over all occurrences of a substring in a /// haystack. /// /// # Complexity /// /// This routine is guaranteed to have worst case linear time complexity /// with respect to both the needle and the haystack. That is, this runs /// in `O(needle.len() + haystack.len())` time. /// /// This routine is also guaranteed to have worst case constant space /// complexity. /// /// # Examples /// /// Basic usage: /// /// ``` /// use memchr::memmem; /// /// let haystack = b"foo bar foo baz foo"; /// let mut it = memmem::rfind_iter(haystack, b"foo"); /// assert_eq!(Some(16), it.next()); /// assert_eq!(Some(8), it.next()); /// assert_eq!(Some(0), it.next()); /// assert_eq!(None, it.next()); /// ``` #[inline] pub fn rfind_iter<'h, 'n, N: 'n + ?Sized + AsRef<[u8]>>( haystack: &'h [u8], needle: &'n N, ) -> FindRevIter<'h, 'n> { FindRevIter::new(haystack, FinderRev::new(needle)) } /// Returns the index of the first occurrence of the given needle. /// /// Note that if you're are searching for the same needle in many different /// small haystacks, it may be faster to initialize a [`Finder`] once, /// and reuse it for each search. /// /// # Complexity /// /// This routine is guaranteed to have worst case linear time complexity /// with respect to both the needle and the haystack. That is, this runs /// in `O(needle.len() + haystack.len())` time. /// /// This routine is also guaranteed to have worst case constant space /// complexity. /// /// # Examples /// /// Basic usage: /// /// ``` /// use memchr::memmem; /// /// let haystack = b"foo bar baz"; /// assert_eq!(Some(0), memmem::find(haystack, b"foo")); /// assert_eq!(Some(4), memmem::find(haystack, b"bar")); /// assert_eq!(None, memmem::find(haystack, b"quux")); /// ``` #[inline] pub fn find(haystack: &[u8], needle: &[u8]) -> Option<usize> { if haystack.len() < 64 { rabinkarp::find(haystack, needle) } else { Finder::new(needle).find(haystack) } } /// Returns the index of the last occurrence of the given needle. /// /// Note that if you're are searching for the same needle in many different /// small haystacks, it may be faster to initialize a [`FinderRev`] once, /// and reuse it for each search. /// /// # Complexity /// /// This routine is guaranteed to have worst case linear time complexity /// with respect to both the needle and the haystack. That is, this runs /// in `O(needle.len() + haystack.len())` time. /// /// This routine is also guaranteed to have worst case constant space /// complexity. /// /// # Examples /// /// Basic usage: /// /// ``` /// use memchr::memmem; /// /// let haystack = b"foo bar baz"; /// assert_eq!(Some(0), memmem::rfind(haystack, b"foo")); /// assert_eq!(Some(4), memmem::rfind(haystack, b"bar")); /// assert_eq!(Some(8), memmem::rfind(haystack, b"ba")); /// assert_eq!(None, memmem::rfind(haystack, b"quux")); /// ``` #[inline] pub fn rfind(haystack: &[u8], needle: &[u8]) -> Option<usize> { if haystack.len() < 64 { rabinkarp::rfind(haystack, needle) } else { FinderRev::new(needle).rfind(haystack) } } /// An iterator over non-overlapping substring matches. /// /// Matches are reported by the byte offset at which they begin. /// /// `'h` is the lifetime of the haystack while `'n` is the lifetime of the /// needle. #[derive(Debug)] pub struct FindIter<'h, 'n> { haystack: &'h [u8], prestate: PrefilterState, finder: Finder<'n>, pos: usize, } impl<'h, 'n> FindIter<'h, 'n> { #[inline(always)] pub(crate) fn new( haystack: &'h [u8], finder: Finder<'n>, ) -> FindIter<'h, 'n> { let prestate = finder.searcher.prefilter_state(); FindIter { haystack, prestate, finder, pos: 0 } } } impl<'h, 'n> Iterator for FindIter<'h, 'n> { type Item = usize; fn next(&mut self) -> Option<usize> { if self.pos > self.haystack.len() { return None; } let result = self .finder .searcher .find(&mut self.prestate, &self.haystack[self.pos..]); match result { None => None, Some(i) => { let pos = self.pos + i; self.pos = pos + core::cmp::max(1, self.finder.needle().len()); Some(pos) } } } } /// An iterator over non-overlapping substring matches in reverse. /// /// Matches are reported by the byte offset at which they begin. /// /// `'h` is the lifetime of the haystack while `'n` is the lifetime of the /// needle. #[derive(Debug)] pub struct FindRevIter<'h, 'n> { haystack: &'h [u8], finder: FinderRev<'n>, /// When searching with an empty needle, this gets set to `None` after /// we've yielded the last element at `0`. pos: Option<usize>, } impl<'h, 'n> FindRevIter<'h, 'n> { #[inline(always)] pub(crate) fn new( haystack: &'h [u8], finder: FinderRev<'n>, ) -> FindRevIter<'h, 'n> { let pos = Some(haystack.len()); FindRevIter { haystack, finder, pos } } } impl<'h, 'n> Iterator for FindRevIter<'h, 'n> { type Item = usize; fn next(&mut self) -> Option<usize> { let pos = match self.pos { None => return None, Some(pos) => pos, }; let result = self.finder.rfind(&self.haystack[..pos]); match result { None => None, Some(i) => { if pos == i { self.pos = pos.checked_sub(1); } else { self.pos = Some(i); } Some(i) } } } } /// A single substring searcher fixed to a particular needle. /// /// The purpose of this type is to permit callers to construct a substring /// searcher that can be used to search haystacks without the overhead of /// constructing the searcher in the first place. This is a somewhat niche /// concern when it's necessary to re-use the same needle to search multiple /// different haystacks with as little overhead as possible. In general, using /// [`find`] is good enough, but `Finder` is useful when you can meaningfully /// observe searcher construction time in a profile. /// /// When the `std` feature is enabled, then this type has an `into_owned` /// version which permits building a `Finder` that is not connected to /// the lifetime of its needle. #[derive(Clone, Debug)] pub struct Finder<'n> { searcher: Searcher<'n>, } impl<'n> Finder<'n> { /// Create a new finder for the given needle. #[inline] pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'n B) -> Finder<'n> { FinderBuilder::new().build_forward(needle) } /// Returns the index of the first occurrence of this needle in the given /// haystack. /// /// # Complexity /// /// This routine is guaranteed to have worst case linear time complexity /// with respect to both the needle and the haystack. That is, this runs /// in `O(needle.len() + haystack.len())` time. /// /// This routine is also guaranteed to have worst case constant space /// complexity. /// /// # Examples /// /// Basic usage: /// /// ``` /// use memchr::memmem::Finder; /// /// let haystack = b"foo bar baz"; /// assert_eq!(Some(0), Finder::new("foo").find(haystack)); /// assert_eq!(Some(4), Finder::new("bar").find(haystack)); /// assert_eq!(None, Finder::new("quux").find(haystack)); /// ``` pub fn find(&self, haystack: &[u8]) -> Option<usize> { self.searcher.find(&mut self.searcher.prefilter_state(), haystack) } /// Returns an iterator over all occurrences of a substring in a haystack. /// /// # Complexity /// /// This routine is guaranteed to have worst case linear time complexity /// with respect to both the needle and the haystack. That is, this runs /// in `O(needle.len() + haystack.len())` time. /// /// This routine is also guaranteed to have worst case constant space /// complexity. /// /// # Examples /// /// Basic usage: /// /// ``` /// use memchr::memmem::Finder; /// /// let haystack = b"foo bar foo baz foo"; /// let finder = Finder::new(b"foo"); /// let mut it = finder.find_iter(haystack); /// assert_eq!(Some(0), it.next()); /// assert_eq!(Some(8), it.next()); /// assert_eq!(Some(16), it.next()); /// assert_eq!(None, it.next()); /// ``` #[inline] pub fn find_iter<'a, 'h>( &'a self, haystack: &'h [u8], ) -> FindIter<'h, 'a> { FindIter::new(haystack, self.as_ref()) } /// Convert this finder into its owned variant, such that it no longer /// borrows the needle. /// /// If this is already an owned finder, then this is a no-op. Otherwise, /// this copies the needle. /// /// This is only available when the `std` feature is enabled. #[cfg(feature = "std")] #[inline] pub fn into_owned(self) -> Finder<'static> { Finder { searcher: self.searcher.into_owned() } } /// Convert this finder into its borrowed variant. /// /// This is primarily useful if your finder is owned and you'd like to /// store its borrowed variant in some intermediate data structure. /// /// Note that the lifetime parameter of the returned finder is tied to the /// lifetime of `self`, and may be shorter than the `'n` lifetime of the /// needle itself. Namely, a finder's needle can be either borrowed or /// owned, so the lifetime of the needle returned must necessarily be the /// shorter of the two. #[inline] pub fn as_ref(&self) -> Finder<'_> { Finder { searcher: self.searcher.as_ref() } } /// Returns the needle that this finder searches for. /// /// Note that the lifetime of the needle returned is tied to the lifetime /// of the finder, and may be shorter than the `'n` lifetime. Namely, a /// finder's needle can be either borrowed or owned, so the lifetime of the /// needle returned must necessarily be the shorter of the two. #[inline] pub fn needle(&self) -> &[u8] { self.searcher.needle() } } /// A single substring reverse searcher fixed to a particular needle. /// /// The purpose of this type is to permit callers to construct a substring /// searcher that can be used to search haystacks without the overhead of /// constructing the searcher in the first place. This is a somewhat niche /// concern when it's necessary to re-use the same needle to search multiple /// different haystacks with as little overhead as possible. In general, /// using [`rfind`] is good enough, but `FinderRev` is useful when you can /// meaningfully observe searcher construction time in a profile. /// /// When the `std` feature is enabled, then this type has an `into_owned` /// version which permits building a `FinderRev` that is not connected to /// the lifetime of its needle. #[derive(Clone, Debug)] pub struct FinderRev<'n> { searcher: SearcherRev<'n>, } impl<'n> FinderRev<'n> { /// Create a new reverse finder for the given needle. #[inline] pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'n B) -> FinderRev<'n> { FinderBuilder::new().build_reverse(needle) } /// Returns the index of the last occurrence of this needle in the given /// haystack. /// /// The haystack may be any type that can be cheaply converted into a /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. /// /// # Complexity /// /// This routine is guaranteed to have worst case linear time complexity /// with respect to both the needle and the haystack. That is, this runs /// in `O(needle.len() + haystack.len())` time. /// /// This routine is also guaranteed to have worst case constant space /// complexity. /// /// # Examples /// /// Basic usage: /// /// ``` /// use memchr::memmem::FinderRev; /// /// let haystack = b"foo bar baz"; /// assert_eq!(Some(0), FinderRev::new("foo").rfind(haystack)); /// assert_eq!(Some(4), FinderRev::new("bar").rfind(haystack)); /// assert_eq!(None, FinderRev::new("quux").rfind(haystack)); /// ``` pub fn rfind<B: AsRef<[u8]>>(&self, haystack: B) -> Option<usize> { self.searcher.rfind(haystack.as_ref()) } /// Returns a reverse iterator over all occurrences of a substring in a /// haystack. /// /// # Complexity /// /// This routine is guaranteed to have worst case linear time complexity /// with respect to both the needle and the haystack. That is, this runs /// in `O(needle.len() + haystack.len())` time. /// /// This routine is also guaranteed to have worst case constant space /// complexity. /// /// # Examples /// /// Basic usage: /// /// ``` /// use memchr::memmem::FinderRev; /// /// let haystack = b"foo bar foo baz foo"; /// let finder = FinderRev::new(b"foo"); /// let mut it = finder.rfind_iter(haystack); /// assert_eq!(Some(16), it.next()); /// assert_eq!(Some(8), it.next()); /// assert_eq!(Some(0), it.next()); /// assert_eq!(None, it.next()); /// ``` #[inline] pub fn rfind_iter<'a, 'h>( &'a self, haystack: &'h [u8], ) -> FindRevIter<'h, 'a> { FindRevIter::new(haystack, self.as_ref()) } /// Convert this finder into its owned variant, such that it no longer /// borrows the needle. /// /// If this is already an owned finder, then this is a no-op. Otherwise, /// this copies the needle. /// /// This is only available when the `std` feature is enabled. #[cfg(feature = "std")] #[inline] pub fn into_owned(self) -> FinderRev<'static> { FinderRev { searcher: self.searcher.into_owned() } } /// Convert this finder into its borrowed variant. /// /// This is primarily useful if your finder is owned and you'd like to /// store its borrowed variant in some intermediate data structure. /// /// Note that the lifetime parameter of the returned finder is tied to the /// lifetime of `self`, and may be shorter than the `'n` lifetime of the /// needle itself. Namely, a finder's needle can be either borrowed or /// owned, so the lifetime of the needle returned must necessarily be the /// shorter of the two. #[inline] pub fn as_ref(&self) -> FinderRev<'_> { FinderRev { searcher: self.searcher.as_ref() } } /// Returns the needle that this finder searches for. /// /// Note that the lifetime of the needle returned is tied to the lifetime /// of the finder, and may be shorter than the `'n` lifetime. Namely, a /// finder's needle can be either borrowed or owned, so the lifetime of the /// needle returned must necessarily be the shorter of the two. #[inline] pub fn needle(&self) -> &[u8] { self.searcher.needle() } } /// A builder for constructing non-default forward or reverse memmem finders. /// /// A builder is primarily useful for configuring a substring searcher. /// Currently, the only configuration exposed is the ability to disable /// heuristic prefilters used to speed up certain searches. #[derive(Clone, Debug, Default)] pub struct FinderBuilder { config: SearcherConfig, } impl FinderBuilder { /// Create a new finder builder with default settings. pub fn new() -> FinderBuilder { FinderBuilder::default() } /// Build a forward finder using the given needle from the current /// settings. pub fn build_forward<'n, B: ?Sized + AsRef<[u8]>>( &self, needle: &'n B, ) -> Finder<'n> { Finder { searcher: Searcher::new(self.config, needle.as_ref()) } } /// Build a reverse finder using the given needle from the current /// settings. pub fn build_reverse<'n, B: ?Sized + AsRef<[u8]>>( &self, needle: &'n B, ) -> FinderRev<'n> { FinderRev { searcher: SearcherRev::new(needle.as_ref()) } } /// Configure the prefilter setting for the finder. /// /// See the documentation for [`Prefilter`] for more discussion on why /// you might want to configure this. pub fn prefilter(&mut self, prefilter: Prefilter) -> &mut FinderBuilder { self.config.prefilter = prefilter; self } } /// The internal implementation of a forward substring searcher. /// /// The reality is that this is a "meta" searcher. Namely, depending on a /// variety of parameters (CPU support, target, needle size, haystack size and /// even dynamic properties such as prefilter effectiveness), the actual /// algorithm employed to do substring search may change. #[derive(Clone, Debug)] struct Searcher<'n> { /// The actual needle we're searching for. /// /// A CowBytes is like a Cow<[u8]>, except in no_std environments, it is /// specialized to a single variant (the borrowed form). needle: CowBytes<'n>, /// A collection of facts computed on the needle that are useful for more /// than one substring search algorithm. ninfo: NeedleInfo, /// A prefilter function, if it was deemed appropriate. /// /// Some substring search implementations (like Two-Way) benefit greatly /// if we can quickly find candidate starting positions for a match. prefn: Option<PrefilterFn>, /// The actual substring implementation in use. kind: SearcherKind, } /// A collection of facts computed about a search needle. /// /// We group these things together because it's useful to be able to hand them /// to prefilters or substring algorithms that want them. #[derive(Clone, Copy, Debug)] pub(crate) struct NeedleInfo { /// The offsets of "rare" bytes detected in the needle. /// /// This is meant to be a heuristic in order to maximize the effectiveness /// of vectorized code. Namely, vectorized code tends to focus on only /// one or two bytes. If we pick bytes from the needle that occur /// infrequently, then more time will be spent in the vectorized code and /// will likely make the overall search (much) faster. /// /// Of course, this is only a heuristic based on a background frequency /// distribution of bytes. But it tends to work very well in practice. pub(crate) rarebytes: RareNeedleBytes, /// A Rabin-Karp hash of the needle. /// /// This is store here instead of in a more specific Rabin-Karp search /// since Rabin-Karp may be used even if another SearchKind corresponds /// to some other search implementation. e.g., If measurements suggest RK /// is faster in some cases or if a search implementation can't handle /// particularly small haystack. (Moreover, we cannot use RK *generally*, /// since its worst case time is multiplicative. Instead, we only use it /// some small haystacks, where "small" is a constant.) pub(crate) nhash: NeedleHash, } /// Configuration for substring search. #[derive(Clone, Copy, Debug, Default)] struct SearcherConfig { /// This permits changing the behavior of the prefilter, since it can have /// a variable impact on performance. prefilter: Prefilter, } #[derive(Clone, Debug)] enum SearcherKind { /// A special case for empty needles. An empty needle always matches, even /// in an empty haystack. Empty, /// This is used whenever the needle is a single byte. In this case, we /// always use memchr. OneByte(u8), /// Two-Way is the generic work horse and is what provides our additive /// linear time guarantee. In general, it's used when the needle is bigger /// than 8 bytes or so. TwoWay(twoway::Forward), #[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))] GenericSIMD128(x86::sse::Forward), #[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))] GenericSIMD256(x86::avx::Forward), } impl<'n> Searcher<'n> { #[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))] fn new(config: SearcherConfig, needle: &'n [u8]) -> Searcher<'n> { use self::SearcherKind::*; let ninfo = NeedleInfo::new(needle); let prefn = prefilter::forward(&config.prefilter, &ninfo.rarebytes, needle); let kind = if needle.len() == 0 { Empty } else if needle.len() == 1 { OneByte(needle[0]) } else if let Some(fwd) = x86::avx::Forward::new(&ninfo, needle) { GenericSIMD256(fwd) } else if let Some(fwd) = x86::sse::Forward::new(&ninfo, needle) { GenericSIMD128(fwd) } else { TwoWay(twoway::Forward::new(needle)) }; Searcher { needle: CowBytes::new(needle), ninfo, prefn, kind } } #[cfg(not(all(not(miri), target_arch = "x86_64", memchr_runtime_simd)))] fn new(config: SearcherConfig, needle: &'n [u8]) -> Searcher<'n> { use self::SearcherKind::*; let ninfo = NeedleInfo::new(needle); let prefn = prefilter::forward(&config.prefilter, &ninfo.rarebytes, needle); let kind = if needle.len() == 0 { Empty } else if needle.len() == 1 { OneByte(needle[0]) } else { TwoWay(twoway::Forward::new(needle)) }; Searcher { needle: CowBytes::new(needle), ninfo, prefn, kind } } /// Return a fresh prefilter state that can be used with this searcher. /// A prefilter state is used to track the effectiveness of a searcher's /// prefilter for speeding up searches. Therefore, the prefilter state /// should generally be reused on subsequent searches (such as in an /// iterator). For searches on a different haystack, then a new prefilter /// state should be used. /// /// This always initializes a valid (but possibly inert) prefilter state /// even if this searcher does not have a prefilter enabled. fn prefilter_state(&self) -> PrefilterState { if self.prefn.is_none() { PrefilterState::inert() } else { PrefilterState::new() } } fn needle(&self) -> &[u8] { self.needle.as_slice() } fn as_ref(&self) -> Searcher<'_> { use self::SearcherKind::*; let kind = match self.kind { Empty => Empty, OneByte(b) => OneByte(b), TwoWay(tw) => TwoWay(tw), #[cfg(all( not(miri), target_arch = "x86_64", memchr_runtime_simd ))] GenericSIMD128(gs) => GenericSIMD128(gs), #[cfg(all( not(miri), target_arch = "x86_64", memchr_runtime_simd ))] GenericSIMD256(gs) => GenericSIMD256(gs), }; Searcher { needle: CowBytes::new(self.needle()), ninfo: self.ninfo, prefn: self.prefn, kind, } } #[cfg(feature = "std")] fn into_owned(self) -> Searcher<'static> { use self::SearcherKind::*; let kind = match self.kind { Empty => Empty, OneByte(b) => OneByte(b), TwoWay(tw) => TwoWay(tw), #[cfg(all( not(miri), target_arch = "x86_64", memchr_runtime_simd ))] GenericSIMD128(gs) => GenericSIMD128(gs), #[cfg(all( not(miri), target_arch = "x86_64", memchr_runtime_simd ))] GenericSIMD256(gs) => GenericSIMD256(gs), }; Searcher { needle: self.needle.into_owned(), ninfo: self.ninfo, prefn: self.prefn, kind, } } /// Implements forward substring search by selecting the implementation /// chosen at construction and executing it on the given haystack with the /// prefilter's current state of effectiveness. #[inline(always)] fn find( &self, state: &mut PrefilterState, haystack: &[u8], ) -> Option<usize> { use self::SearcherKind::*; let needle = self.needle(); if haystack.len() < needle.len() { return None; } match self.kind { Empty => Some(0), OneByte(b) => crate::memchr(b, haystack), TwoWay(ref tw) => { // For very short haystacks (e.g., where the prefilter probably // can't run), it's faster to just run RK. if rabinkarp::is_fast(haystack, needle) { rabinkarp::find_with(&self.ninfo.nhash, haystack, needle) } else { self.find_tw(tw, state, haystack, needle) } } #[cfg(all( not(miri), target_arch = "x86_64", memchr_runtime_simd ))] GenericSIMD128(ref gs) => { // The SIMD matcher can't handle particularly short haystacks, // so we fall back to RK in these cases. if haystack.len() < gs.min_haystack_len() { rabinkarp::find_with(&self.ninfo.nhash, haystack, needle) } else { gs.find(haystack, needle) } } #[cfg(all( not(miri), target_arch = "x86_64", memchr_runtime_simd ))] GenericSIMD256(ref gs) => { // The SIMD matcher can't handle particularly short haystacks, // so we fall back to RK in these cases. if haystack.len() < gs.min_haystack_len() { rabinkarp::find_with(&self.ninfo.nhash, haystack, needle) } else { gs.find(haystack, needle) } } } } /// Calls Two-Way on the given haystack/needle. /// /// This is marked as unlineable since it seems to have a better overall /// effect on benchmarks. However, this is one of those cases where /// inlining it results an improvement in other benchmarks too, so I /// suspect we just don't have enough data yet to make the right call here. /// /// I suspect the main problem is that this function contains two different /// inlined copies of Two-Way: one with and one without prefilters enabled. #[inline(never)] fn find_tw( &self, tw: &twoway::Forward, state: &mut PrefilterState, haystack: &[u8], needle: &[u8], ) -> Option<usize> { if let Some(prefn) = self.prefn { // We used to look at the length of a haystack here. That is, if // it was too small, then don't bother with the prefilter. But two // things changed: the prefilter falls back to memchr for small // haystacks, and, above, Rabin-Karp is employed for tiny haystacks // anyway. if state.is_effective() { let mut pre = Pre { state, prefn, ninfo: &self.ninfo }; return tw.find(Some(&mut pre), haystack, needle); } } tw.find(None, haystack, needle) } } impl NeedleInfo { pub(crate) fn new(needle: &[u8]) -> NeedleInfo { NeedleInfo { rarebytes: RareNeedleBytes::forward(needle), nhash: NeedleHash::forward(needle), } } } /// The internal implementation of a reverse substring searcher. /// /// See the forward searcher docs for more details. Currently, the reverse /// searcher is considerably simpler since it lacks prefilter support. This /// was done because it adds a lot of code, and more surface area to test. And /// in particular, it's not clear whether a prefilter on reverse searching is /// worth it. (If you have a compelling use case, please file an issue!) #[derive(Clone, Debug)] struct SearcherRev<'n> { /// The actual needle we're searching for. needle: CowBytes<'n>, /// A Rabin-Karp hash of the needle. nhash: NeedleHash, /// The actual substring implementation in use. kind: SearcherRevKind, } #[derive(Clone, Debug)] enum SearcherRevKind { /// A special case for empty needles. An empty needle always matches, even /// in an empty haystack. Empty, /// This is used whenever the needle is a single byte. In this case, we /// always use memchr. OneByte(u8), /// Two-Way is the generic work horse and is what provides our additive /// linear time guarantee. In general, it's used when the needle is bigger /// than 8 bytes or so. TwoWay(twoway::Reverse), } impl<'n> SearcherRev<'n> { fn new(needle: &'n [u8]) -> SearcherRev<'n> { use self::SearcherRevKind::*; let kind = if needle.len() == 0 { Empty } else if needle.len() == 1 { OneByte(needle[0]) } else { TwoWay(twoway::Reverse::new(needle)) }; SearcherRev { needle: CowBytes::new(needle), nhash: NeedleHash::reverse(needle), kind, } } fn needle(&self) -> &[u8] { self.needle.as_slice() } fn as_ref(&self) -> SearcherRev<'_> { use self::SearcherRevKind::*; let kind = match self.kind { Empty => Empty, OneByte(b) => OneByte(b), TwoWay(tw) => TwoWay(tw), }; SearcherRev { needle: CowBytes::new(self.needle()), nhash: self.nhash, kind, } } #[cfg(feature = "std")] fn into_owned(self) -> SearcherRev<'static> { use self::SearcherRevKind::*; let kind = match self.kind { Empty => Empty, OneByte(b) => OneByte(b), TwoWay(tw) => TwoWay(tw), }; SearcherRev { needle: self.needle.into_owned(), nhash: self.nhash, kind, } } /// Implements reverse substring search by selecting the implementation /// chosen at construction and executing it on the given haystack with the /// prefilter's current state of effectiveness. #[inline(always)] fn rfind(&self, haystack: &[u8]) -> Option<usize> { use self::SearcherRevKind::*; let needle = self.needle(); if haystack.len() < needle.len() { return None; } match self.kind { Empty => Some(haystack.len()), OneByte(b) => crate::memrchr(b, haystack), TwoWay(ref tw) => { // For very short haystacks (e.g., where the prefilter probably // can't run), it's faster to just run RK. if rabinkarp::is_fast(haystack, needle) { rabinkarp::rfind_with(&self.nhash, haystack, needle) } else { tw.rfind(haystack, needle) } } } } } /// This module defines some generic quickcheck properties useful for testing /// any substring search algorithm. It also runs those properties for the /// top-level public API memmem routines. (The properties are also used to /// test various substring search implementations more granularly elsewhere as /// well.) #[cfg(all(test, feature = "std", not(miri)))] mod proptests { // N.B. This defines the quickcheck tests using the properties defined // below. Because of macro-visibility weirdness, the actual macro is // defined at the top of this file. define_memmem_quickcheck_tests!(super::find, super::rfind); /// Check that every prefix of the given byte string is a substring. pub(crate) fn prefix_is_substring( reverse: bool, bs: &[u8], mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>, ) -> bool { if bs.is_empty() { return true; } for i in 0..(bs.len() - 1) { let prefix = &bs[..i]; if reverse { assert_eq!(naive_rfind(bs, prefix), search(bs, prefix)); } else { assert_eq!(naive_find(bs, prefix), search(bs, prefix)); } } true } /// Check that every suffix of the given byte string is a substring. pub(crate) fn suffix_is_substring( reverse: bool, bs: &[u8], mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>, ) -> bool { if bs.is_empty() { return true; } for i in 0..(bs.len() - 1) { let suffix = &bs[i..]; if reverse { assert_eq!(naive_rfind(bs, suffix), search(bs, suffix)); } else { assert_eq!(naive_find(bs, suffix), search(bs, suffix)); } } true } /// Check that naive substring search matches the result of the given search /// algorithm. pub(crate) fn matches_naive( reverse: bool, haystack: &[u8], needle: &[u8], mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>, ) -> bool { if reverse { naive_rfind(haystack, needle) == search(haystack, needle) } else { naive_find(haystack, needle) == search(haystack, needle) } } /// Naively search forwards for the given needle in the given haystack. fn naive_find(haystack: &[u8], needle: &[u8]) -> Option<usize> { if needle.is_empty() { return Some(0); } else if haystack.len() < needle.len() { return None; } for i in 0..(haystack.len() - needle.len() + 1) { if needle == &haystack[i..i + needle.len()] { return Some(i); } } None } /// Naively search in reverse for the given needle in the given haystack. fn naive_rfind(haystack: &[u8], needle: &[u8]) -> Option<usize> { if needle.is_empty() { return Some(haystack.len()); } else if haystack.len() < needle.len() { return None; } for i in (0..(haystack.len() - needle.len() + 1)).rev() { if needle == &haystack[i..i + needle.len()] { return Some(i); } } None } } /// This module defines some hand-written "simple" substring tests. It /// also provides routines for easily running them on any substring search /// implementation. #[cfg(test)] mod testsimples { define_memmem_simple_tests!(super::find, super::rfind); /// Each test is a (needle, haystack, expected_fwd, expected_rev) tuple. type SearchTest = (&'static str, &'static str, Option<usize>, Option<usize>); const SEARCH_TESTS: &'static [SearchTest] = &[ ("", "", Some(0), Some(0)), ("", "a", Some(0), Some(1)), ("", "ab", Some(0), Some(2)), ("", "abc", Some(0), Some(3)), ("a", "", None, None), ("a", "a", Some(0), Some(0)), ("a", "aa", Some(0), Some(1)), ("a", "ba", Some(1), Some(1)), ("a", "bba", Some(2), Some(2)), ("a", "bbba", Some(3), Some(3)), ("a", "bbbab", Some(3), Some(3)), ("a", "bbbabb", Some(3), Some(3)), ("a", "bbbabbb", Some(3), Some(3)), ("a", "bbbbbb", None, None), ("ab", "", None, None), ("ab", "a", None, None), ("ab", "b", None, None), ("ab", "ab", Some(0), Some(0)), ("ab", "aab", Some(1), Some(1)), ("ab", "aaab", Some(2), Some(2)), ("ab", "abaab", Some(0), Some(3)), ("ab", "baaab", Some(3), Some(3)), ("ab", "acb", None, None), ("ab", "abba", Some(0), Some(0)), ("abc", "ab", None, None), ("abc", "abc", Some(0), Some(0)), ("abc", "abcz", Some(0), Some(0)), ("abc", "abczz", Some(0), Some(0)), ("abc", "zabc", Some(1), Some(1)), ("abc", "zzabc", Some(2), Some(2)), ("abc", "azbc", None, None), ("abc", "abzc", None, None), ("abczdef", "abczdefzzzzzzzzzzzzzzzzzzzz", Some(0), Some(0)), ("abczdef", "zzzzzzzzzzzzzzzzzzzzabczdef", Some(20), Some(20)), ("xyz", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaxyz", Some(32), Some(32)), // Failures caught by quickcheck. ("\u{0}\u{15}", "\u{0}\u{15}\u{15}\u{0}", Some(0), Some(0)), ("\u{0}\u{1e}", "\u{1e}\u{0}", None, None), ]; /// Run the substring search tests. `search` should be a closure that /// accepts a haystack and a needle and returns the starting position /// of the first occurrence of needle in the haystack, or `None` if one /// doesn't exist. pub(crate) fn run_search_tests_fwd( mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>, ) { for &(needle, haystack, expected_fwd, _) in SEARCH_TESTS { let (n, h) = (needle.as_bytes(), haystack.as_bytes()); assert_eq!( expected_fwd, search(h, n), "needle: {:?}, haystack: {:?}, expected: {:?}", n, h, expected_fwd ); } } /// Run the substring search tests. `search` should be a closure that /// accepts a haystack and a needle and returns the starting position of /// the last occurrence of needle in the haystack, or `None` if one doesn't /// exist. pub(crate) fn run_search_tests_rev( mut search: impl FnMut(&[u8], &[u8]) -> Option<usize>, ) { for &(needle, haystack, _, expected_rev) in SEARCH_TESTS { let (n, h) = (needle.as_bytes(), haystack.as_bytes()); assert_eq!( expected_rev, search(h, n), "needle: {:?}, haystack: {:?}, expected: {:?}", n, h, expected_rev ); } } }