1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
// Copyright 2012-2014 The Rust Project Developers and Eric Kidd. See the // COPYRIGHT-RUST.txt file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed except // according to those terms. //! A simple library implementing the [CESU-8 compatibility encoding //! scheme](http://www.unicode.org/reports/tr26/tr26-2.html). This is a //! non-standard variant of UTF-8 that is used internally by some systems //! that need to represent UTF-16 data as 8-bit characters. Yes, this is //! ugly. //! //! Use of this encoding is discouraged by the Unicode Consortium. It's OK //! for working with existing internal APIs, but it should not be used for //! transmitting or storing data. //! //! ``` //! use std::borrow::Cow; //! use cesu8::{from_cesu8, to_cesu8}; //! //! // 16-bit Unicode characters are the same in UTF-8 and CESU-8. //! assert_eq!(Cow::Borrowed("aé日".as_bytes()), //! to_cesu8("aé日")); //! assert_eq!(Cow::Borrowed("aé日"), //! from_cesu8("aé日".as_bytes()).unwrap()); //! //! // This string is CESU-8 data containing a 6-byte surrogate pair, //! // which decodes to a 4-byte UTF-8 string. //! let data = &[0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81]; //! assert_eq!(Cow::Borrowed("\u{10401}"), //! from_cesu8(data).unwrap()); //! ``` //! //! ### A note about security //! //! As a general rule, this library is intended to fail on malformed or //! unexpected input. CESU-8 is supposed to be an internal-only format, //! and if we're seeing malformed data, we assume that it's either a bug in //! somebody's code, or an attacker is trying to improperly encode data to //! evade security checks. //! //! If you have a use case for lossy conversion to UTF-8, or conversion //! from mixed UTF-8/CESU-8 data, please feel free to submit a pull request //! for `from_cesu8_lossy_permissive` with appropriate behavior. //! //! ### Java and U+0000, and other variants //! //! Java uses the CESU-8 encoding as described above, but with one //! difference: The null character U+0000 is represented as an overlong //! UTF-8 sequence `C0 80`. This is supported by the `from_java_cesu8` and //! `to_java_cesu8` methods. //! //! ### Surrogate pairs and UTF-8 //! //! The UTF-16 encoding uses "surrogate pairs" to represent Unicode code //! points in the range from U+10000 to U+10FFFF. These are 16-bit numbers //! in the range 0xD800 to 0xDFFF. //! //! * 0xD800 to 0xDBFF: First half of surrogate pair. When encoded as //! CESU-8, these become **1110**1101 **10**100000 **10**000000 to //! **1110**1101 **10**101111 **10**111111. //! //! * 0xDC00 to 0xDFFF: Second half of surrogate pair. These become //! **1110**1101 **10**110000 **10**000000 to //! **1110**1101 **10**111111 **10**111111. //! //! Wikipedia [explains](http://en.wikipedia.org/wiki/UTF-16) the //! code point to UTF-16 conversion process: //! //! > Consider the encoding of U+10437 (𐐷): //! > //! > * Subtract 0x10000 from 0x10437. The result is 0x00437, 0000 0000 0100 //! > 0011 0111. //! > * Split this into the high 10-bit value and the low 10-bit value: //! > 0000000001 and 0000110111. //! > * Add 0xD800 to the high value to form the high surrogate: 0xD800 + //! > 0x0001 = 0xD801. //! > * Add 0xDC00 to the low value to form the low surrogate: 0xDC00 + //! > 0x0037 = 0xDC37. #![warn(missing_docs)] use std::borrow::Cow; use std::error::Error; use std::fmt; use std::result::Result; use std::slice; use std::str::{from_utf8, from_utf8_unchecked}; use unicode::utf8_char_width; mod unicode; /// Mask of the value bits of a continuation byte. const CONT_MASK: u8 = 0b0011_1111u8; /// Value of the tag bits (tag mask is !CONT_MASK) of a continuation byte. const TAG_CONT_U8: u8 = 0b1000_0000u8; /// The CESU-8 data could not be decoded as valid UTF-8 data. #[derive(Clone, Copy, Debug)] pub struct Cesu8DecodingError; impl Error for Cesu8DecodingError { fn description(&self) -> &str { "decoding error" } fn cause(&self) -> Option<&Error> { None } } impl fmt::Display for Cesu8DecodingError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "could not convert CESU-8 data to UTF-8") } } /// Which variant of the encoding are we working with? #[derive(PartialEq, Eq)] enum Variant { /// Regular CESU-8, with '\0' represented by itself. Standard, /// This is technically Java's "Modified UTF-8", which is supposedly /// like CESU-8, except that it UTF-8 encodes the '\0' byte. I'm sure /// it seemed like a good idea at the time. Java, } /// Convert CESU-8 data to a Rust string, re-encoding only if necessary. /// Returns an error if the data cannot be represented as valid UTF-8. /// /// ``` /// use std::borrow::Cow; /// use cesu8::from_cesu8; /// /// // This string is valid as UTF-8 or CESU-8, so it doesn't change, /// // and we can convert it without allocating memory. /// assert_eq!(Cow::Borrowed("aé日"), /// from_cesu8("aé日".as_bytes()).unwrap()); /// /// // This string is CESU-8 data containing a 6-byte surrogate pair, /// // which becomes a 4-byte UTF-8 string. /// let data = &[0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81]; /// assert_eq!(Cow::Borrowed("\u{10401}"), /// from_cesu8(data).unwrap()); /// ``` pub fn from_cesu8(bytes: &[u8]) -> Result<Cow<str>, Cesu8DecodingError> { from_cesu8_internal(bytes, Variant::Standard) } /// Convert Java's modified UTF-8 data to a Rust string, re-encoding only if /// necessary. Returns an error if the data cannot be represented as valid /// UTF-8. /// /// ``` /// use std::borrow::Cow; /// use cesu8::from_java_cesu8; /// /// // This string is valid as UTF-8 or modified UTF-8, so it doesn't change, /// // and we can convert it without allocating memory. /// assert_eq!(Cow::Borrowed("aé日"), /// from_java_cesu8("aé日".as_bytes()).unwrap()); /// /// // This string is modified UTF-8 data containing a 6-byte surrogate pair, /// // which becomes a 4-byte UTF-8 string. /// let data = &[0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81]; /// assert_eq!(Cow::Borrowed("\u{10401}"), /// from_java_cesu8(data).unwrap()); /// /// // This string is modified UTF-8 data containing null code-points. /// let data = &[0xC0, 0x80, 0xC0, 0x80]; /// assert_eq!(Cow::Borrowed("\0\0"), /// from_java_cesu8(data).unwrap()); /// ``` pub fn from_java_cesu8(bytes: &[u8]) -> Result<Cow<str>, Cesu8DecodingError> { from_cesu8_internal(bytes, Variant::Java) } /// Do the actual work of decoding. fn from_cesu8_internal(bytes: &[u8], variant: Variant) -> Result<Cow<str>, Cesu8DecodingError> { match from_utf8(bytes) { Ok(str) => Ok(Cow::Borrowed(str)), _ => { let mut decoded = Vec::with_capacity(bytes.len()); if decode_from_iter(&mut decoded, &mut bytes.iter(), variant) { // Keep this assertion in debug mode only. It's important // that this assertion is true, because Rust assumes that // all UTF-8 strings are valid. debug_assert!(from_utf8(&decoded[..]).is_ok()); Ok(Cow::Owned(unsafe { String::from_utf8_unchecked(decoded) })) } else { Err(Cesu8DecodingError) } } } } #[test] fn test_from_cesu8() { // The surrogate-encoded character below is from the ICU library's // icu/source/test/testdata/conversion.txt test case. let data = &[0x4D, 0xE6, 0x97, 0xA5, 0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81, 0x7F]; assert_eq!(Cow::Borrowed("M日\u{10401}\u{7F}"), from_cesu8(data).unwrap()); // We used to have test data from the CESU-8 specification, but when we // worked it through manually, we got the wrong answer: // // Input: [0xED, 0xAE, 0x80, 0xED, 0xB0, 0x80] // Binary: 11101101 10101110 10000000 11101101 10110000 10000000 // // 0b1101_101110_000000 -> 0xDB80 // 0b1101_110000_000000 -> 0xDC00 // // ((0xDB80 - 0xD800) << 10) | (0xDC00 - 0xDC00) -> 0xE0000 // 0x10000 + 0xE0000 -> 0xF0000 // // The spec claims that we are supposed to get 0x10000, not 0xF0000. // Since I can't reconcile this example data with the text of the // specification, I decided to use a test character from ICU instead. } // Our internal decoder, based on Rust's is_utf8 implementation. fn decode_from_iter( decoded: &mut Vec<u8>, iter: &mut slice::Iter<u8>, variant: Variant) -> bool { macro_rules! err { () => { return false } } macro_rules! next { () => { match iter.next() { Some(a) => *a, // We needed data, but there was none: error! None => err!() } } } macro_rules! next_cont { () => { { let byte = next!(); if (byte) & !CONT_MASK == TAG_CONT_U8 { byte } else { err!() } } } } loop { let first = match iter.next() { Some(&b) => b, // We're at the end of the iterator and a codepoint boundary at // the same time, so this string is valid. None => return true }; if variant == Variant::Java && first == 0 { // Java's modified UTF-8 should never contain \0 directly. err!(); } else if first < 128 { // Pass ASCII through directly. decoded.push(first); } else if first == 0xc0 && variant == Variant::Java { match next!() { 0x80 => decoded.push(0), _ => err!(), } } else { let w = utf8_char_width(first); let second = next_cont!(); match w { // Two-byte sequences can be used directly. 2 => { decoded.extend([first, second].iter().cloned()); } 3 => { let third = next_cont!(); match (first, second) { // These are valid UTF-8, so pass them through. (0xE0 , 0xA0 ... 0xBF) | (0xE1 ... 0xEC, 0x80 ... 0xBF) | (0xED , 0x80 ... 0x9F) | (0xEE ... 0xEF, 0x80 ... 0xBF) => { decoded.extend([first, second, third].iter() .cloned()) } // First half a surrogate pair, so decode. (0xED , 0xA0 ... 0xAF) => { if next!() != 0xED { err!() } let fifth = next_cont!(); if fifth < 0xB0 || 0xBF < fifth { err!() } let sixth = next_cont!(); let s = dec_surrogates(second, third, fifth, sixth); decoded.extend(s.iter().cloned()); } _ => err!() } } _ => err!() } } } } /// Convert the two trailing bytes from a CESU-8 surrogate to a regular /// surrogate value. fn dec_surrogate(second: u8, third: u8) -> u32 { 0xD000u32 | ((second & CONT_MASK) as u32) << 6 | (third & CONT_MASK) as u32 } /// Convert the bytes from a CESU-8 surrogate pair into a valid UTF-8 /// sequence. Assumes input is valid. fn dec_surrogates(second: u8, third: u8, fifth: u8, sixth: u8) -> [u8; 4] { // Convert to a 32-bit code point. let s1 = dec_surrogate(second, third); let s2 = dec_surrogate(fifth, sixth); let c = 0x10000 + (((s1 - 0xD800) << 10) | (s2 - 0xDC00)); //println!("{:0>8b} {:0>8b} {:0>8b} -> {:0>16b}", 0xEDu8, second, third, s1); //println!("{:0>8b} {:0>8b} {:0>8b} -> {:0>16b}", 0xEDu8, fifth, sixth, s2); //println!("-> {:0>32b}", c); assert!(0x010000 <= c && c <= 0x10FFFF); // Convert to UTF-8. // 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx [0b1111_0000u8 | ((c & 0b1_1100_0000_0000_0000_0000) >> 18) as u8, TAG_CONT_U8 | ((c & 0b0_0011_1111_0000_0000_0000) >> 12) as u8, TAG_CONT_U8 | ((c & 0b0_0000_0000_1111_1100_0000) >> 6) as u8, TAG_CONT_U8 | ((c & 0b0_0000_0000_0000_0011_1111) ) as u8] } /// Convert a Rust `&str` to CESU-8 bytes. /// /// ``` /// use std::borrow::Cow; /// use cesu8::to_cesu8; /// /// // This string is valid as UTF-8 or CESU-8, so it doesn't change, /// // and we can convert it without allocating memory. /// assert_eq!(Cow::Borrowed("aé日".as_bytes()), to_cesu8("aé日")); /// /// // This string is a 4-byte UTF-8 string, which becomes a 6-byte CESU-8 /// // vector. /// assert_eq!(Cow::Borrowed(&[0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81]), /// to_cesu8("\u{10401}")); /// ``` pub fn to_cesu8(text: &str) -> Cow<[u8]> { if is_valid_cesu8(text) { Cow::Borrowed(text.as_bytes()) } else { Cow::Owned(to_cesu8_internal(text, Variant::Standard)) } } /// Convert a Rust `&str` to Java's modified UTF-8 bytes. /// /// ``` /// use std::borrow::Cow; /// use cesu8::to_java_cesu8; /// /// // This string is valid as UTF-8 or CESU-8, so it doesn't change, /// // and we can convert it without allocating memory. /// assert_eq!(Cow::Borrowed("aé日".as_bytes()), to_java_cesu8("aé日")); /// /// // This string is a 4-byte UTF-8 string, which becomes a 6-byte modified /// // UTF-8 vector. /// assert_eq!(Cow::Borrowed(&[0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81]), /// to_java_cesu8("\u{10401}")); /// /// // This string contains null, which becomes 2-byte modified UTF-8 encoding /// assert_eq!(Cow::Borrowed(&[0xC0, 0x80, 0xC0, 0x80]), /// to_java_cesu8("\0\0")); /// ``` pub fn to_java_cesu8(text: &str) -> Cow<[u8]> { if is_valid_java_cesu8(text) { Cow::Borrowed(text.as_bytes()) } else { Cow::Owned(to_cesu8_internal(text, Variant::Java)) } } fn to_cesu8_internal(text: &str, variant: Variant) -> Vec<u8> { let bytes = text.as_bytes(); let mut encoded = Vec::with_capacity(bytes.len() + bytes.len() >> 2); let mut i = 0; while i < bytes.len() { let b = bytes[i]; if variant == Variant::Java && b == 0 { encoded.push(0xc0); encoded.push(0x80); i += 1; } else if b < 128 { // Pass ASCII through quickly. encoded.push(b); i += 1; } else { // Figure out how many bytes we need for this character. let w = utf8_char_width(b); assert!(w <= 4); assert!(i + w <= bytes.len()); if w != 4 { // Pass through short UTF-8 sequences unmodified. encoded.extend(bytes[i..i+w].iter().cloned()); } else { // Encode 4-byte sequences as 6 bytes. let s = unsafe { from_utf8_unchecked(&bytes[i..i+w]) }; let c = s.chars().next().unwrap() as u32 - 0x10000; let mut s: [u16; 2] = [0; 2]; s[0] = ((c >> 10) as u16) | 0xD800; s[1] = ((c & 0x3FF) as u16) | 0xDC00; encoded.extend(enc_surrogate(s[0]).iter().cloned()); encoded.extend(enc_surrogate(s[1]).iter().cloned()); } i += w; } } encoded } /// Check whether a Rust string contains valid CESU-8 data. pub fn is_valid_cesu8(text: &str) -> bool { // We rely on the fact that Rust strings are guaranteed to be valid // UTF-8. for b in text.bytes() { if (b & !CONT_MASK) == TAG_CONT_U8 { continue; } if utf8_char_width(b) > 3 { return false; } } true } /// Check whether a Rust string contains valid Java's modified UTF-8 data. pub fn is_valid_java_cesu8(text: &str) -> bool { !text.contains('\0') && is_valid_cesu8(text) } #[test] fn test_valid_cesu8() { assert!(is_valid_cesu8("aé日")); assert!(is_valid_java_cesu8("aé日")); assert!(!is_valid_cesu8("\u{10401}")); assert!(!is_valid_java_cesu8("\u{10401}")); assert!(is_valid_cesu8("\0\0")); assert!(!is_valid_java_cesu8("\0\0")); } /// Encode a single surrogate as CESU-8. fn enc_surrogate(surrogate: u16) -> [u8; 3] { assert!(0xD800 <= surrogate && surrogate <= 0xDFFF); // 1110xxxx 10xxxxxx 10xxxxxx [0b11100000 | ((surrogate & 0b11110000_00000000) >> 12) as u8, TAG_CONT_U8 | ((surrogate & 0b00001111_11000000) >> 6) as u8, TAG_CONT_U8 | ((surrogate & 0b00000000_00111111) ) as u8] }